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Memristive technology promising for Neuromorphic Computing

• Fast, non-volatile memory that can be embedded at the core of CMOS

• Memory state is the electrical resistance of the device (high or low)

• Many variations (oxide, phase change, magnetoresistive)
• In industry test production (Samsung, TSMC, Intel, ST Microelectronics...)

Low: « 1 »

High: « 0 »

Resistance state

RRAM:
Filamentary/Interfacial

However, challenge of device imperfections/variations
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Low precision Neural Networks

Hubara, Courbariaux et al. NIPS 2016
Yoshua Bengio’s group
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Binary 
Inputs 
{+1,-1}

Binary 
Outputs 
{+1,-1}

BinarySynapses {+1, -1}

Synapses {+1, -1} Synapses {+1,-1} Synapses {+1, -1}

Previous work: implementation of
Binarized weights
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Low precision Neural Networks

Hubara, Courbariaux et al. NIPS 2016
Yoshua Bengio’s group
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Ternary 
Inputs 

{+1,0,-1}

Ternary 
Outputs 
{+1,0,-1}

TernarySynapses {+1,0,-1}

Synapses {+1,0,-1} Synapses {+1,0,-1} Synapses {+1,0,-1}

In this work: implementation of
Ternarized weights



Outline of the talk

1. Hybrid CMOS/Resistive RAM experimental implementation of ternarized
weight using a precharge sense amplifier in the low supply voltage regime

2. PyTorch simulations demonstrating that Ternarized Neural Networks 
consistently outperform Binarized Neural Networks

3. Demonstration of the network robustness to the device imperfections in the 
system

4



5

RRAM
TE

BE

Our die

HfO2 RRAMfabricated 130 nm 
RRAM/CMOS hybrid chip

Our kilobit array



Background: two Resistive RAM devices as one synapse

Peripheric circuit to differentiate resistance states
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Schematic of the system
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Background: two Resistive RAM devices as one synapse

Device pairs programmed in a complementary
fashion reduce error rate without computation overhead

Hirtzlin et al., Frontiers in Neuroscience, 2020
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In this work: encode a third state with HRS/HRS
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The Sense converges slowly when operated with low supply voltage
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This work: leverage the speed of the Sense to store a new value

Spice simulation

(Q, Qb)(Q, Qb)
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The Sense converges slowly when operated with low supply voltage

Experimental data
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Implementation of ternary weights

Experimental data

No memory overhead and in a single Sense operation
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A behavior magnified in the low supply voltage regime

A behavior magnified in low supply voltage regime of the Sense
-> Better for energy efficiency



Ternarized Neural Networks (TNNs) outperform Binarized Neural Networks

CIFAR-10 Vision task (Krizhevsky et al., 2009)

Model Size = Number of filters

+1
0
-1

39 = 19,683    ternarized kernels
29 = 512     binarized kernels
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TNNs outperform BNNs consistently

PyTorch simulations
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Device pairs programmed in the stochastic area create new errors

New type of errors: 0 can be read as ±1

- SET compliance: 200μA
- RESET voltage: 2.5V
- Programming pulses: 100μs

Experimental Distribution of the LRS and HRS



Ternarized Neural Networks
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TNNs are resilient to errors due to device variability

TNNs still outperform BNNs when
devices errors are taken into account

Binarized Neural Networks



Concluding remarks

• Impact of this work: best envisionned for low-power, high-performing dedicated
hardware for edge intelligence (wireless sensors, medical applications…)

• Low supply voltage regimes can give room for new functionalities

• Device imperfection should be embraced rather than fought against
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Fundings:

Thank you for your attention!
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However, device to device variation is a challenge 

Very Strong Strong Weak

High Programmation energy
Low cyclability High 1T1R error rateTrade-off

Programmation
conditions

Appealing for low precision neural networks
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Example of a BNN implemention

Hirtzlin et al., 2019

XNOR in the Sense: binary product
« In-memory computing »
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Where do errors come from ?

Process Voltage Temperature variation analysis:

0°C
1.1V Supply voltage

27°C
1.2V Supply voltage

60°C
1.3V Supply voltage


