AICAS 2020 Special Session: AI accelerators with Memristive Technology

Low Power In-Memory Implementation of Ternary Neural Networks with Resistive RAM-Based Synapse

.et

ceatect

C₂N

¹C2N, Univ. Paris-Saclay, CNRS, Palaiseau, France ²IM2NP, Univ. Aix-Marseille et Toulon, CNRS, France ³CEA, LETI, Grenoble, France

Memristive technology promising for Neuromorphic Computing

- Fast, non-volatile memory that can be embedded at the core of CMOS
- Memory state is the electrical resistance of the device (high or low)
- Many variations (oxide, phase change, magnetoresistive)
- In industry test production (Samsung, TSMC, Intel, ST Microelectronics...)

However, challenge of device imperfections/variations

Low precision Neural Networks

Previous work: implementation of Binarized weights

Low precision Neural Networks

In this work: implementation of Ternarized weights

- 1. Hybrid CMOS/Resistive RAM experimental implementation of ternarized weight using a precharge sense amplifier in the low supply voltage regime
- 2. PyTorch simulations demonstrating that Ternarized Neural Networks consistently outperform Binarized Neural Networks
- 3. Demonstration of the network **robustness to the device imperfections** in the system

Our kilobit array

Our die

fabricated 130 nm RRAM/CMOS hybrid chip

HfO₂ RRAM

Background: two Resistive RAM devices as one synapse

Peripheric circuit to differentiate resistance states

Background: two Resistive RAM devices as one synapse

Hirtzlin et al., Frontiers in Neuroscience, 2020

Device pairs programmed in a complementary fashion reduce error rate without computation overhead

In this work: encode a third state with HRS/HRS

No memory overhead

The Sense converges slowly when operated with low supply voltage

This work: leverage the speed of the Sense to store a new value

The Sense converges slowly when operated with low supply voltage

Implementation of ternary weights

Experimental data

No memory overhead and in a single Sense operation

A behavior magnified in the low supply voltage regime

A behavior magnified in low supply voltage regime of the Sense -> Better for energy efficiency

Ternarized Neural Networks (TNNs) outperform Binarized Neural Networks

PyTorch simulations

Device pairs programmed in the stochastic area create new errors

Experimental Distribution of the LRS and HRS

- SET compliance: 200µA
- RESET voltage: 2.5V
- Programming pulses: 100µs

New type of errors: 0 can be read as ± 1

TNNs are resilient to errors due to device variability

TNNs still outperform BNNs when devices errors are taken into account

- Impact of this work: best envisionned for **low-power**, **high-performing** dedicated hardware for **edge intelligence** (wireless sensors, medical applications...)
- Low supply voltage regimes can give room for new functionalities

• Device imperfection should be embraced rather than fought against

Thank you for your attention!

Fundings:

European Research Council Established by the European Commission

However, device to device variation is a challenge

Appealing for low precision neural networks

Example of a BNN implemention

Where do errors come from ?

Process Voltage Temperature variation analysis:

