linkedin.com/in/axel-lbx | laborieux-axel.github.io | axel.labo@gmail.com

PROFESSIONAL EXPERIENCE

Friedrich Miescher Institute (affiliated to Novartis)

Postdoctoral researcher in AI and neuroscience.

- Designed mathematical theories and algorithms modelling how brains can learn. Demonstrated • effectiveness on large-scale datasets, surpassing prior theories by 88%, and published at Top ML conferences (NeurIPS '22, ICLR '24), with application to low-power analog AI hardware.
- Designed theories for AI explainability of self-supervised deep learning. Based on new understanding, designed a model showing improved empirical robustness on large-scale vision settings, published at NeurIPS '23.

SKILLS

Computer: Python, Shell, Git, Slurm, Scientific programming. Libraries: PyTorch, NumPy, JAX, Flax, Haiku, Pandas.

Deep learning: Equilibrium models, self-supervised and continual learning, sequence modelling. Experience with ConvNets, ResNets, Transformers. **Mathematics:** Linear algebra, probability, statistics, real and complex analysis.

EDUCATION

Paris-Saclay University Ph.D. in Physics.	Palaiseau, France Sep 2018–Sep 2021
Title: "Bio-inspired continual learning and credit assignment for neuromorphic computing" Main topic: software-hardware co-design for Edge AI .	
 Created a continual learning algorithm dedicated to binarized neural network accelerator continuously learning from incoming data while matching deep learning baselines. Improved by 7× the performance of an on-chip local learning algorithm dedicated to ana networks on natural images by designing a better gradient estimator. Upgraded a physical memory device based on resistive RAM technology from binary to terr quantization, increasing model performance without circuit overhead. 	rs for alog neural nary
Output: 6 first-author contributions (3 journal publications, 3 conference acceptances) spanning learning, physics and neuroscience.	g machine
Ecole Normale Supérieure M.Sc. in Statistical and Quantum Physics.	Paris, France Sep 2017–Sep 2018
Ecole polytechnique (France's top engineering school)	Palaiseau, France

SELECTED PUBLICATIONS (Google Scholar: 272 citations, h-index 7)

B.Sc. and M.Sc. in applied Mathematics and Computer Science.

- Laborieux, A., & Zenke, F. (2024). Improving equilibrium propagation without weight symmetry through Jacobian homeostasis. *ICLR* (accepted, main conference)
- Halvagal, M. S.*, Laborieux, A.*, & Zenke, F. (2023). Implicit variance regularization in non-contrastive SSL. *NeurIPS* (* equal contribution)
- Laborieux, A., & Zenke, F. (2022). Holomorphic equilibrium propagation computes exact gradients through finite size oscillations. NeurIPS, 35, 12950-12963. Oral (top 7%)
- Laborieux, A., Ernoult, M., Hirtzlin, T., & Querlioz, D. (2021). Synaptic metaplasticity in binarized neural networks. Nature communications, 12(1), 2549. (Covered in press by Tech Xplore)

Oct 2021-Present

Basel, Switzerland

Sep 2014–Sep 2017

AWARDS

- Swiss National Science Foundation postdoctoral fellowship. Leading a two-years research project aimed at modelling cortical computation (CHF190k+, **top 9**% applications).
- Best thesis award for 2021 from the Engineering Sciences Graduate School of Paris-Saclay (€2k).
- NeurIPS 2022 scholar award, was granted hotel and travel tickets for attending NeurIPS.
- Google TPU Research Cloud fellow.

INVITED TALKS AND SEMINARS

- Kenyon Lab, Los Alamos National Laboratory, "Computing local gradients with Holomorphic EqProp".
- Contributed talk at the workshop "*Recent advances in understanding artificial and biological neural networks*" at **Les Houches school of physics**, France.
- CEA Grenoble, Vianello Lab. "Credit assignment through neural oscillations".
- Forschungszentrum Jülich, Neftci Lab. "Credit assignment through neural oscillations".
- Machine Learning seminar at **IBM Zürich**.
- Cognitive Machine Learning (CoML) team led by Prof. Dupoux at Ecole Normale Supérieure Paris.

ADDITIONAL EXPERIENCE AND SKILLS

Reviewer: NeurIPS, ICLR, ICML, Frontiers, IEEE TCAS, ISCAS.

Languages: French (native), English (fluent), Mandarin (fluent).

Leadership: Served in the French police force for a 4-month military service program.

Hobbies: Sinology, Calligraphy, Baking, Travelling, Hiking, Motorcycle.